
Virtual Development Environment in a Box

Students: Dylan McDougall (dmcdougall2019@my.fit.edu)

and Ian Orzel (iorzel2019@my.fit.edu)

Faculty: Ryan Stansifer (ryan@fit.edu)

Client: Ryan Stansifer (ryan@fit.edu)

Progress of current Milestone:

Task Completion Ian Dylan Todo

Implement, demo, and test
command-line interface support
in Python

100% 80% 20%

Implement, demo, and test
command-line interface as shell
and batch scripts to send
information to Python

100% 50% 50%

Implement, demo, and test
installer or installation guide for
installing system on Windows,
MacOS, and Debian

100% 10% 90%

Discussion:

● Implement, demo, and test command-line interface support in Python:

In order to implement a command-line interface, we had to create a module that would

take strings written by the user as input, validate them, and then dispatch to the correct

modules of the container manager. This process requires a lot of exception handling in

order to prevent users from inputting something invalid. It is difficult to ensure that all

cases have been handled, so we have spent a lot of time testing it with strange inputs.

Also, during this process, we realized that we needed to partially change how the

program was set up, as certain parts of the program needed to be continually running

mailto:dmcdougall2019@my.fit.edu
mailto:iorzel2019@my.fit.edu
mailto:ryan@fit.edu
mailto:ryan@fit.edu


even when the user was not directly interacting with it. Thus, we split our application into

a client and a server to facilitate this.

● Implement, demo, and test command-line interface as shell and batch scripts to send

information to Python:

Creating the batch script proved more trivial than expected. The batch script simply calls

a python program and sends all arguments given to it as input to the python program.

After some more work on this, we determined that we did not need to create custom

scripts and instead used PyInstaller to create executable files for us.

● Implement, demo, and test installer or installation guide for installing system on

Windows, MacOS, and Debian:

There are a few dependency challenges we have when distributing our program. The

program depends on QEMU and the Python interpreter in order to function properly, as

well as all of its Python module dependencies. To solve the Python issue, we’re using a

program called PyInstaller in order to distribute our Python program(s) in executable

wrappers, which come bundled with all the necessary dependencies for running the

specific version of Python with the exact modules we want. For QEMU, we are just

going to have the installer prompt the user to install it on their computer.

With regard to the installer itself, it will be distributed as a single executable file. The end

user will download the release for their platform of choice, run the installer file to launch

the installer, and follow the installer’s instructions. The installer will copy the program

files to the installation directory, create the .containers directory, and add the relevant

folder containing the run program to the user’s PATH.



Member Discussion:

● Ian Orzel: My main focus for this milestone was creating the command-line interface

and a batch script that would interact with the Python program. I implemented the new

module of the program that takes user input and dispatches it to the proper locations of

the program. I also created the basic batch script to interact with it. After these two things

were completed, the focus turned to testing. I have spent the rest of the time testing the

system working together to try to run into problems, so that I could make the program

deal with those situations when they arose.

● Dylan McDougall:

There was a lot of general code maintenance we had to do this milestone just to get it to a

state where we feel comfortable distributing the code to other students. One big thing that

had to be done was to allow the container manager to run in the background and have a

command-line interface interact with it. Ian worked on the command line interface. What

I did was split the functionality of the program into a kind of client-server relationship.

Since we’re going to be transmitting a lot of text between processes, we figured that the

best way to do this was by using sockets on localhost to facilitate that communication.

This required rewriting a lot of the existing codebase. This task occupied a majority of

my time. Once I got that to a point where I felt comfortable with it, I moved onto the

installer task.

A lot of the challenge was finding the best way to distribute Python. I considered

shipping an embedded Python environment with the program, but it wasn't really feasible

because the Python project does not provide an embedded version for macOS and Linux,



so that was a dead-end. PyInstaller was really the only practical option after this. The

other alternative was using the system Python, but that would have been problematic

because the version of Python a given system has might not be compatible with our

program, which was written with a very recent version of Python in mind. So with that,

PyInstaller. This also allowed me to write the installer program itself in Python, which is

nice and allows consistency with the rest of the project. Right now there’s no way to

cross-compile, but that’s really a non-issue since we both use Windows and it's trivial to

build for Linux using WSL, and we wouldn’t be able to build for macOS without using

macOS anyway.

Next Milestone Matrix:

Task Ian Dylan

Work with Compiler Theory students to fix bugs in the system and improve
its usability

50% 50%

Implement, demo, and test interaction between server-side repositories and
our program

100% 0%

Implement, demo, and test wizard for creating new containers 0% 100%

Discussion of Planned Tasks for Next Milestone:

● Work with Compiler Theory students to fix bugs in the system and improve its

usability: During the next milestone, the Compiler Theory course will begin, and Dr.

Stansifer will be using the first generation of the tool that we have been developing.

During this time, we need to teach students how to use the tool in order to complete their

coursework, and we will be taking feedback from them in order to determine ways to



improve the tool and fix bugs that they find. During this milestone, we will work to

quickly fix bugs and add basic features as quickly as possible as students report them.

● Implement, demo, and test interaction between server-side repositories and our

program: One of the key functionalities of our program is the ability to upload

containers onto servers that students can then easily download from. For this milestone,

we would like to create this basic functionality. The two main pieces of this is to create

the code for the server that takes in requests and sends back containers based on the

requests and to upgrade the code of the students so that their program can interact with

the servers.

● Implement, demo, and test wizard for creating new containers: Another key

functionality of our program is a wizard that allows new containers to be built from

scratch easily. We plan to upgrade the command-line interface to allow users to specify

various options that allow them to create containers that will be configured to their liking.

Dates of Meeting with Client: (See Faculty Meeting Times)

Client Feedback for Milestone: (See Faculty Feedback)

Dates of Meeting with Faculty:

● November 2

● November 16



FacultyFeedback for Milestone:

● Implement, demo, and test command-line interface support in Python:

● Implement, demo, and test command-line interface as shell and batch scripts to send

information to Python:

● Implement, demo, and test installer or installation guide for installing system on

Windows, MacOS, and Debian:

Faculty Advisor Signature: _________________________________________ Date: _________



Score for each member:

Ian 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Dylan 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10

Faculty Advisor Signature: _________________________________________ Date: _________


